- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Barth, Dylan (1)
-
Bertagna, Michael A (1)
-
Bright, Lydia J (1)
-
Gao, Shan (1)
-
Han, Mira V (1)
-
Jiang, Yu-Yang (1)
-
Kumar, Santosh (1)
-
Pradhan, Ajay (1)
-
Sarkar, Debolina (1)
-
Sexton, Corinne E (1)
-
Tsypin, Lev M Z (1)
-
Turkewitz, Aaron P (1)
-
Victor Paul, Sylvia (1)
-
Ye, Fei (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& *Soto, E. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
Notredame, Cedric (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Notredame, Cedric (Ed.)Abstract Although an established model organism, Tetrahymena thermophila remains comparatively inaccessible to high throughput screens, and alternative bioinformatic approaches still rely on unconnected datasets and outdated algorithms. Here, we report a new approach to consolidating RNA-seq and microarray data based on a systematic exploration of parameters and computational controls, enabling us to infer functional gene associations from their co-expression patterns. To illustrate the power of this approach, we took advantage of new data regarding a previously studied pathway, the biogenesis of a secretory organelle called the mucocyst. Our untargeted clustering approach recovered over 80% of the genes that were previously verified to play a role in mucocyst biogenesis. Furthermore, we tested four new genes that we predicted to be mucocyst-associated based on their co-expression and found that knocking out each of them results in mucocyst secretion defects. We also found that our approach succeeds in clustering genes associated with several other cellular pathways that we evaluated based on prior literature. We present the Tetrahymena Gene Network Explorer (TGNE) as an interactive tool for genetic hypothesis generation and functional annotation in this organism and as a framework for building similar tools for other systems.more » « less
-
Sexton, Corinne E; Victor Paul, Sylvia; Barth, Dylan; Han, Mira V (, NAR Genomics and Bioinformatics)Notredame, Cedric (Ed.)Abstract We can now analyze 3D physical interactions of chromatin regions with chromatin conformation capture technologies, in addition to the 1D chromatin state annotations, but methods to integrate this information are lacking. We propose a method to integrate the chromatin state of interacting regions into a vector representation through the contact-weighted sum of chromatin states. Unsupervised clustering on integrated chromatin states and Micro-C contacts reveals common patterns of chromatin interaction signatures. This provides an integrated view of the complex dynamics of concurrent change occurring in chromatin state and in chromatin interaction, adding another layer of annotation beyond chromatin state or Hi-C contact separately.more » « less
An official website of the United States government
